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Propagation of dark solitons with higher-order effects in optical fibers
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In this paper, we analyze dark soliton propagation in nonlinear optical fibers with higher-order effects such
as third order dispersion, self-steepening, and stimulated Raman scattering. We consider the Hirota equation
and the higher-order nonlinear Schro¨dinger equation, and identify conditions for dark soliton propagation
through Painleve´ analysis. We also construct an explicit Lax pair, and Hirota bilinear form is used to generate
one and two dark solitons.
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I. INTRODUCTION

Optical solitons have been the objects of extensive th
retical and experimental studies during the last three deca
because of their potential applications in long distance co
munication. The pioneering works of Hasegawa and Tap
@1#, who predicted solitons theoretically, and Mollenau
Stolen, and Gordon@2#, who observed them experimentall
made solitons a realistic tool for this cause. The solito
localized-in-time optical pulses, evolve from a nonline
change in the refractive index of the material, known as K
effect, induced by the light intensity distribution. When t
combined effects of the intensity-dependent refractive in
nonlinearity and the frequency-dependent pulse disper
exactly compensate for one another, the pulse propag
without any change in its shape, being self-trapped by
waveguide nonlinearity. The propagation of optical solito
in a nonlinear dispersive optical fiber is governed by
well-known completely integrable nonlinear Schro¨dinger
equation which is of the form

iqt6~1/2!qxx1uqu2q50, ~1!

whereq is the complex amplitude of the pulse envelopex
and t represent the spatial and temporal coordinates, and
1 or 2 signs before the dispersive term denote the ano
lous and normal dispersive regimes, respectively. In
anomalous dispersive regime, this equation possess
bright soliton solution, and in the normal dispersive regim
possesses dark solitons. When compared with bright solit
the investigations of dark solitons are inadequate. Howe
in recent years, the dark soliton has also attracted a lo
attention, and many innovative results have already appe
concerning this exciting topic.

The generation of dark solitons was first predicted by H
segawa and Tappert@3# and Zakharov and Shabat@4#, and
experimentally demonstrated by Emplitet al. @5#. The bright
soliton is a pulse on a zero-intensity background, while
dark soliton appears as an intensity dip in an infinitely e
tended constant background. Apart from the inverse inten
profile, an additional unique feature of a dark soliton is
specific phase profile. The dark-soliton phase chirp is
monotonic and odd function of the spatial coordinate. R
cently, increased interest in dark spatial solitons has bec
connected with their possible application in optical logic d
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vices @6# and waveguide optics as dynamic switches a
junctions @7#. These applications are based on the fact t
dark spatial solitons actually create waveguides in a s
defocusing medium. They are also considered for signal p
cessing and communication applications because of thei
herent stability@8#. In fact, the influence of noise and fibe
loss on dark solitons is much lesser than that on bright s
tons. Recently, Kivshar and Davies gave an extensive rev
article on dark solitons which discussed the above points
more @9#.

Motivated by these facts, in this paper, we consider
theoretical aspects of dark soliton propagation in nonlin
Schrödinger~NLS!-type equations, namely, the Hirota equ
tion and the higher-order NLS equation which include t
higher-order effects such as third order dispersion, s
steepening, and stimulated inelastic scattering. We explic
construct a Lax pair for the dark solitons in the NLS equ
tion, and the other two higher-order equations and an ex
sion toN-coupled systems are also discussed. In the cas
higher-order systems, in addition to the already known bri
soliton case, a case for dark solitons is identified throu
Painlevéanalysis. The dark one- and two-soliton solutio
are generated by means of Hirota’s bilinear form and
significance of these solutions are discussed.

The paper is organized as follows. In Sec. II, we discu
the Lax pair for dark solitons in the NLS system. In Sec. I
we discuss the Painleve´ analysis of the higher-order NLS
~HNLS! equation through which cases of dark soliton sy
tems are identified. In Sec. IV, we give a Lax pair for th
Hirota equation and darks one- and two-soliton solutions
obtained for the Hirota equation through Hirota’s biline
form. We also construct the Lax pair for the HNLS equati
in Sec. V. For this system, dark one- and two-soliton so
tions are presented.

II. LAX PAIR FOR DARK SOLITONS IN THE NLS
SYSTEM

The Lax pair assures the complete integrablity of a n
linear system, and is especially used to obtainN-soliton so-
lutions by means of inverse scattering transform method
this paper, we follow the Ablowitz, Kaup, Newell, and Seg
~AKNS! formalism to obtain the Lax pair. The linear eige
value problem for optical solitons in the NLS system can
constructed as follows:
©2001 The American Physical Society08-1
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A. MAHALINGAM AND K. PORSEZIAN PHYSICAL REVIEW E 64 046608
Cx5UC,

C t5VC,

where

C5~C1 C2!T. ~2!

Here the Lax operatorsU andV are given in the forms

U5S 2 il/2 2mq

mq* il/2 D ,

~3!

V5l2S 2 i m̄/2m 0

0 i m̄/2m D 1lS 0 2m̄q

2m̄q* 0 D
1S imm̄uqu2 2 i m̄qx

2 i m̄qx* 2 imm̄uqu2D ,

wherel is the eigenvalue parameter, andm and m̄ are con-
stants whose choices make the resultant equation eithe
bright or dark solitons as indeed shown below.

Case (i): m5m̄51. For this case, the compatibility cond
tion Ut2Vx1@U,V#50 gives the nonlinear Schro¨dinger
equation for bright solitons of the form

iqt1qxx12uqu2q50. ~4!

Case (ii): m5i and m̄52i. For this case, the compatibilit
condition gives the nonlinear Schro¨dinger equation for dark
solitons:

iqt2qxx12uqu2q50. ~5!

Thus, in this section, we discuss a single system of L
pair for both bright and dark solitons for the nonlinear Sch¨-
dinger equation. In the case of bright solitons, the Ba¨cklund
transformation and soliton solutions are well known@10#.
However, for the dark solitons, we are not able to obt
Bäcklund transformation and soliton solutions yet. Hence
proceed to determine the conditions for dark soliton pro
gation in higher-order systems.

III. PAINLEVE´ ANALYSIS OF THE NLS EQUATION
WITH HIGHER-ORDER EFFECTS

Even though the NLS equation explains pulse propaga
in a nonlinear optical fiber, it has its own limitations. F
example, when the optical pulse is of the order of femtos
onds, the NLS equation becomes inadequate, as higher o
effects like third order dispersion~TOD!, self-steepening
~SS!, and stimulated Raman scattering~SRS! should be in-
cluded. In such a case, the governing equation is the
known widely as the higher-order NLS equation, first d
rived by Kodama and Hasegawa@11#. The effect of these
effects in uncoupled and coupled systems for bright solit
is well explained in many papers@12–14#. Inelastic Raman
scattering is due to the delayed response of the med
which forces the pulse to undergo a frequency shift which
known as a self-frequency shift. The effect of self-steepen
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is due to the intensity-dependent group velocity of the opti
pulse, which gives the pulse a very narrow width in t
course of propagation. Because of this, the peak of the p
will travel more slowly than the wings. Recently, Painle´
analysis for this equation has been carried out by many
thors, but they identified only the bright soliton case; t
dark soliton case was not reported@15–18#. Here it should be
mentioned that the authors of Ref.@18# anticipated that Pain-
levé analysis of the HNLS equation could also be extend
to the dark case. Also, a thorough analysis of the Sa
Satsuma equation was performed in the case of bright s
tons by using the inverse scattering transform method@19#
and by the Riemann problem method@20#. By fully exploit-
ing the symmetry properties of the scattering matrix e
ments, the most general one-parameter single-soliton s
tion, the four parameter breather soliton solution and
most generalN-soliton solution of the perturbed nonlinea
Schrödinger equation in the bright soliton case were given
the authors of Ref.@18# in these references.

The effect of third order dispersion was discussed
Kivshar and Afanasjev, who showed that near the zero p
of the group velocity dispersion, dark solitons exist as hum
instead of dips. It was proved that the solitary wave acts a
source generating trailing oscillations, which with the lea
ing front propagates with the group velocityVg @21#. When
we take third order dispersion and self-steepening toge
into account with the group velocity and self-phase modu
tion terms of the NLS system, the governing equation
known as the Hirota equation, whose bright soliton prop
ties were analyzed by many authors@22,23#. On the other
hand, if we include the stimulated inelastic scattering
gether with these two effects, we would obtain the high
order NLS equation. For the known integrable system
Radhakrishnan and Lakshmanan@24# considered both brigh
and dark soliton propagation in higher-order NLS system
In this paper, we carry out the Painleve´ analysis to find out
new integrability conditions for the case of dark soliton
The HNLS equation is given in the form

qt56 iqxx12i uqu2q1«@qxxx1a1~ uqu2q!x1a2q~ uqu2!x#
~6!

whereq is the slowly varying amplitude of the pulse env
lope, anda1 anda2 are arbitrary constants and the1 sign
corresponds to the anomalous dispersive regime and th2
sign to normal dispersive regime. The parametere represents
the relative width of the spectrum that arises due to qu
monochromocity, and it is assumed that 0,e,1. As the
bright soliton versions of the above equations are well st
ied, in this paper, we consider only the dark soliton vers
of Eq. ~6!. To identify the new integrable systems, we follo
the Weiss, Tabor, and Carnevale~WTC! procedure@25# to
carry out the Painleve´ analysis, according to which a give
partial differential equation~PDE! is integrable, if its solu-
tions are single valued about the movable singularity ma
fold. This method requires the following steps to prove t
integrability: ~i! determination of the leading orders of Lau
rent series,~ii ! identification of the powers at which the a
bitrary functions can enter into the Laurent series called re
8-2
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nances and~iii ! verification of the existence of sufficien
number of arbitrary functions at the resonance values w
out the introduction of a movable critical manifold and co
nection with complete integrable properties. Throughout t
analysis, we used the Kruskal’s reduced manifold ansatz

In order to carry out the Painleve´ analysis, let us assum
q5a andq* 5b. Equation~6! becomes

at52 iaxx12ia2b1«@axxx1a1~a2b!x1a2a~ab!x#,
~7a!

bt5 ibxx22ib2a1«@bxxx1a1~b2a!x1a2b~ab!x#.
~7b!

To determine the leading order behavior, we expand

a'a0fm and b'b0fn, ~8!

wherem andn are negative integers. Substituting Eq.~8! into
Eqs.~7! and equating the dominant terms, we obtain

m5n21 and a0b0526/~3a112a2!. ~9!

To find the resonances, we substitute

a5a0f211ajf
j 21 and b5b0f211bjf

j 21. ~10!

Collecting the coefficients ofw j 24 and solving the resultan
determinant, the resonances are obtained as

j 521,0,3,4,36
2a2

A23a1a222a2
2

. ~11!

The resonance atj 521 corresponds to the arbitrarine
of the singular manifold and the arbitrariness atj 50 is veri-
fied from Eq.~9!, which shows that eithera0 or b0 is arbi-
trary. From the resonance analysis, it can be seen that t
are two possible cases for the resonances to be integers.
are

case ~i!: a152a2 ,
~12!

case ~ii !: a1522a2 .

At this juncture, it is interesting to note that case~i! has the
resonances

j 521,0,1,3,4,5 ~13!

for both a152a256 anda152a2526.
The former case corresponds to well-known bright so

tons for the Hirota equation, and the latter one correspond
dark soliton solutions. From arbitrary analysis, we also fou
that Eq.~6! admits sufficient number of arbitrary functions
the resonance values as proved below.

On the other hand, case~ii ! has the resonances

j 521,0,2,3,4,4 ~14!

for both a1522a256 and a1522a2526. The former
case corresponds to the well-known bright solitons for
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HNLS equation first given by Sasa and Satsuma@12#, and the
latter case corresponds to the dark soliton solutions.

The Hirota equation corresponding to dark solitons can
given as

qt52 iqxx12i uqu2q1«@qxxx1a1~ uqu2q!x2a1q~ uqu2!x#.

~15!

In order to check the existence of a sufficient number
arbitrary functions at other resonance values, we substi
the full Laurent series in Eqs.~7! with a252a1 . From the
coefficients of (w23,w23), it can be shown that

a0b152b0a1 and a1526. ~16!

Equation~16! clearly shows that eithera1 or b1 is arbi-
trary, which corresponds to the resonance atj 51. Also, the
value ofa1 shows that it corresponds to a case of integra
ity for which dark solitons may occur. Collecting the coef
cients of (w22,w22), we obtain values fora2 and b2 as
follows:

a25
21

6«b0
@f t12ia0b116«a1b1#,

~17!

b25
21

6«a0
@f t22ib0a116«a1b1#.

Similarly from other coefficients ofw, one can prove the
existence of sufficient number of arbitrary functions witho
the introduction of any movable critical manifold. Hence
can be concluded that the system of Hirota equation for d
solitons passes the Painleve´ analysis, and is expected to b
integrable.

Now let us consider the arbitrary analysis of the Sa
Satsuma case for dark solitons in whicha1522a2 , and the
resonances are given by Eq.~14!. The HNLS equation for
dark solitons is given in the following form:

qt52 iqxx12i uqu2q1«Fqxxx1a1~ uqu2q!x2
a1

2
q~ uqu2!xG .

~18!

We recall that the resonances for this case are given
Eq. ~14!. In order to check the existence of a sufficient nu
ber of arbitrary functions at other resonance values, we s
stitute the full Laurent series in Eqs.~7! with 2a252a1 .
From the coefficients of (w23,w23), it can be shown that

a15
2i ~a0b021!

a1«b0
, ~19a!

b15
22i ~a0b021!

a1«a0
. ~19b!

Similarly, from the coefficient of (w22,w22), we can
show that eithera2 or b2 is arbitrary, which corresponds t
the resonance atj 52. From higher powers ofw, one can
show that in order to prove the existence of a sufficient nu
8-3
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ber of arbitrary functions,a1526 and hencea2523. Thus
it is concluded that the dark soliton cases for both Hirota a
HNLS equations are expected to be integrable only for
particular values ofa1 anda2 viz a1526 anda2523.

It is interesting to note that the constraints given in E
~12!–~14! obtained from Painleve´ analysis are similar to the
one obtained for the bright soliton case, except for s
changes in the parameters of higher-order effects. The p
ence of bright optical solitons with higher-order effects h
been experimentally verified, and the influence of these
fects well studied. However, the dark solitons with the
higher order effects is of only theoretical interest now. Ho
ever, we believe that the constraint given by Eqs.~12!–~14!
is experimentally realizable, as we are able to obtain d
one- and two-soliton solutions for the integrable versions
these systems. Thus Painleve´ analysis proves to be a valu
able tool for obtaining the constraints of the parameters
the existence of dark solitons. Having proved the integra
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ity of dark Hirota and HNLS systems through Painle´
analysis, now we move on to establish the complete integ
bility properties of these systems, such as the Lax pair,
rota’s bilinear form, and soliton solutions.

IV. LAX PAIR FOR DARK HIROTA SYSTEM

The linear eigenvalue problem for dark solitons of t
Hirota system can be constructed as follows:

Cx5UC,

C t5VC,

where

C5~C1 C2!T. ~20!

HereU andV can be given in the forms
U5S 2 il/2 2 iq

iq* il/2 D ,

V5l3S i«/2 0

0 2 i«/2D 1l2S i /2 i«q

2 i«q* 2 i /2D 1lS i«uqu2 iq2«qx

2 iq* 2«qx* 2 i«uqu2D
1S i uqu21«~qqx* 2q* qx! 2i«uqu2q2qx2 i«qxx

22i«uqu2q2qx* 1 i«qxx 2 i uqu21«~2qqx* 1q* qx!
D . ~21!
f

in-
The compatibility conditionUt2Vx1@U,V#50 gives rise to
Eq. ~15!.

Since we are able to obtain the Lax pair for the da
soliton version of the Hirota equation, we conclude that i
possible to perform the inverse scattering transform met
for this equation to obtainN dark soliton solutions. We give
the Hirota bilinear form and the one-soliton solution for th
case below.

Bilinearization and dark soliton solutions

Hirota’s bilinear method@26# is one of the most direct an
elegant methods available to generate multisoliton soluti
of nonlinear PDE’s. In order to obtain dark soliton solutio
for the Hirota equation, we rewrite Eq.~15! in the more
conventional form

iqt2qxx12uqu2q2 i«$qxxx26uqu2qx%50. ~22!

To avoid mathematical complexities, it is rather conv
nient to transform this equation to a simpler form, so that
may be able to generate multisoliton solutions. We make
following transformations to convert the Hirota equation
complex modified KdV~cmKdV! equations:

q~x,t !5Q~Z,T!expF i S Z

3«
2

T

27«2D G ,
s
d

s

-
e
e

T5t, Z5x1
t

3«
. ~23!

Using the above transformations in Eq.~22!, the resultant
complex modified KdV equation is obtained in the form

QT2«$QZZZ26uQu2QZ%50. ~24!

Next we consider the Hirota bilinear transformation

Q5G/F, ~25!

whereG(Z,T) is a complex function andF(Z,T) is a real
function. Using Eq.~25!, we obtain the decoupled forms o
the bilinearized cmK-dV equation as follows:

~DT2«DZ
323«lDZ!G•F50, ~26a!

~DZ
21l!FF522uGu2, ~26b!

wherel is a constant to be determined, and the Hirota bil
ear operatorsDx andDt are defined as
8-4
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Dx
mDt

nG~x,t !•F~x,t !5S ]

]x
2

]

]x8D
mS ]

]t
2

]

]t8D
n

3G~x,t !•F~x8,t8!U
x5x8,t5t8

.

~27!

Further, we assume that

G5g0~11xg1! and F511x f 1 , ~28!

whereg0 is a complex constant, andg1 and f 1 are real func-
tions. Substituting Eq.~28! into Eq. ~26!, and collecting the
coefficients ofx0, we obtain

l522ug0u2. ~29!

The coefficients ofx andx2 lead to the following equations

~DT2«Dz
323«lDZ!~1• f 11g1•1!50, ~30a!

~DZ
21l!~1• f 11 f 1•1!524ug0u2g1, ~30b!

~DT2«DZ
323«lDZ!~g1• f 1!50, ~30c!

~DZ
21l!~ f 1f 1!524ug0u2g1

2. ~30d!

It can be easily shown that Eqs.~30! can be solved if we
assume that

g152 f 152exp@v1T1c1Z1j i
~0!#, ~31!

where

v15«c1~c1
213l!,

~32!
c1

2522l54ug0u2.

Using Eqs.~32!, ~31!, and~25!, we can obtain the dark one
soliton solution in the form

Q5g0 tanhF1

2 H c1S Z2
c1

2«T

2 D 1j1
~0!J G . ~33!

By using transformations~23!, we can obtain the dark one
soliton solution of the Hirota equation. It is clear that t
higher-order effects TOD and SS effects affect the veloc
of the dark soliton, yet they propagate without any change
their shape and intensity. Next, we move on to the const
tion of two-soliton solutions of the Hirota equation. To o
tain the two-soliton solution, we assume the following form
for G andF:

G5g0~11xg11x2g2! and F511x f 11x2f 2 .
~34!

The coefficients ofx0 lead to Eq.~29!. From the coefficient
of x, we obtain

~DT2«DZ
323«lDZ!~1• f 11g1•1!50, ~35a!
04660
y
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~DZ
21l!~1• f 11 f 1•1!524ug0u2g1 . ~35b!

To solve these equations, we assume

g15P1 exp@j1#1P2 exp@j2#

and

f 15exp@j1#1exp@j2#, ~36a!

wherej15v1T1c1Z1j1
(0) andj25v2T1c2Z1j2

(0) with

v15«c1
313«lc1 and v25«c2

313«lc2 . ~36b!

The values ofP1 andP2 are found to be

P15
2ug0u22c1

2

2ug0u2 ,

P25
2ug0u22c2

2

2ug0u2 . ~36c!

The coefficients ofx2 lead to the following equations:

~DT2«DZ
323«lDZ!~1• f 21g1f 11g2•1!50, ~37a!

~DZ
21l!~1• f 21 f 1f 11 f 2•1!12~2ug0u2g21ug0u2g1

2!50.
~37b!

It can be shown that the above system of equations can
satisfied if we assume

g25A12P1P2 exp@j11j2# and f 25A12exp@j11j2#

~38a!

The value ofA12 is found to be

A12

5
~P22P1!$2~v22v1!1«~c22c1!313«l~c22c1!%

~12P1P2!$2~v21v1!1«~c21c1!313«l~c21c1!%
.

~38b!

From the values ofg1 , g2 , g3 , f 1 , and f 2 , one can
obtain dark two-soliton solutions of the Hirota equation.
Fig. 1, this two-soliton solution is plotted. From detailed i
vestigations, we find that dark two-soliton solutions beha
in an elastic manner characteristic of all soliton solutio
They retain their shapes after collision with only a slig
change in their phase. Also, like all dark solitons, they a
pear to repel each other, and hence there is no possibilit
forming a bound state between them. This important feat
is an attractive factor that makes dark solitons a prefer
tool, instead of bright solitons, in long-distance communic
tions. Our next aim is to find the dark one- and two-solit
solutions for the HNLS system.
8-5
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V. LAX PAIR FOR DARK HNLS SYSTEM

The integrable version of the dark HNLS equation tak
the form

qt52 iqxx12i uqu2q1«@qxxx26qxuqu223q~ uqu2!x#.
~39!

As described in the Sec. IV, we present the linear eigenva
problem and the Lax pair in the same manner:

Cx5UC,

C t5VC,

where

C5~C1 C2 C3!T. ~40!

The Lax operatorsU andV can be given in the forms

U5S 2 il/2 2 iq 2 ir

iq* il/2 0

ir * 0 il/2
D ,

~41a!

V5l3S i«/2 0 0

0 2 i«/2 0

0 0 2 i«/2
D

1l2S i /2 i«q i«r

2 i«q* 21/2 0

2 i«r * 0 2 i /2
D

1lS i«~ uqu21ur u2! 2«qx1 iq 2«r x1 ir

2«qx* 2 iq* 2 i«uqu2 2 iq* r

2«r x* 2 ir * 2 ir * q 2 i«ur u2
D

1S A11 A12 A13

A21 A22 A23

A31 A32 A33

D ,

FIG. 1. Dark two-soliton solution of the Hirota system.
04660
s
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where

A115 i uqu21 i ur u21«~qqx* 2qxq* 1rr x* 2r xr * !,

A1252qx2 i«qxx12i«~ququ21r ur u2!,

A1352r x2 i«r xx12i«~r uqu21r ur u2!,

A2152qx* 1 i«qxx* 22i«~q* uqu21q* ur u2!,

A2252 i uqu21«~q* qx2qqx* !, ~41b!

A2352 iq* r 1«~q* r x2rqx* !,

A3152r x* 1 i«r xx* 22i«~r * uqu21r * ur u2!,

A3252 ir * q1«~r * qx2qrx* !,

A3352 i ur u21«~r * r x2rr x* !,

with

r 5eiQq* and Q~x,t !5 2
3 ~x1 2

9 t !. ~41c!

The compatibility conditionUt2Vx1@U,V#50 gives
rise to Eq.~39!. The construction of Lax pair confirms tha
the dark HNLS equation is indeed completely integrab
The next logical step would be to extend our above result
N-coupled systems to analyze theN-field propagation. This
work is under progress and the results will be publish
soon. Though we are able to obtain the Lax pair for da
soliton systems, we could not yet obtain dark soliton so
tions from it through standard methods like Ba¨cklund trans-
formation. Hence, in the next subsection, we use Hirot
bilinear technique to derive the dark soliton solutions.

Bilinearization and dark soliton solutions

We follow the same method used for the Hirota equat
in the previous sections to obtain dark soliton solutions
HNLS equation. First we transform Eq.~39! to a CmK-dV
equation using Eqs.~24! as follows:

QT2«@QZZZ26uQu2QZ23Q~ uQu2!Z#50. ~42!

The decoupled bilinear forms of Eq.~42! are given as

~DT2«DZ
313«lDZ!G•F50, ~43a!

~DZ
32l!F•F524uGu2, ~43b!

DZG* •G50. ~43c!

To obtain one-soliton solutions, we assume

G5g0~11xg1! and F511x f 1 , ~44!

where, g0 is a complex constant, andg1 and f 1 are real
functions. Substituting Eq.~44! into Eq. ~43!, and collecting
the coefficients ofx0, we obtain

l54ug0u2. ~45!
8-6
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The coefficients ofx lead to the following equations:

~DT2«DZ
313«lDZ!~1• f 11g1•1!50, ~46a!

~DZ
22l!~1• f 11 f 1•1!18ug0u2g150, ~46b!

DZ~1•g11g1•1!50. ~46c!

The coefficients ofx2 lead to the following equations:

~DT2«DZ
313«lDZ!~g1• f 1!50, ~47a!

~DZ
22l!~ f 1• f 1!14ug0u2g1

250, ~47b!

DZg1g150. ~47c!

Equations~46! and~47! suggest that they can be solved if w
assume

g152 f 152exp@v1T1c1Z1j1
~0!#, ~48a!

where

v15«c1~c1
223l!,

c1
252l58ug0u2. ~48b!

Using Eqs.~48! and ~44!, the dark one-soliton solution o
cmK-dV equation is obtained as

Q5g0 tanhF1

2 H c1S Z2
c1

2«T

2 D 1j1
~0!J G . ~49!

Using transformation~23!, we can easily obtain the cor
responding dark one-soliton solution of the HNLS equat
~39!. It is clear that the higher-order effects TOD, SS, a
SRS affect the velocity of the dark soliton, yet they prop
gate without any change in their shape and intensity. In
context, it should be mentioned that Mel’nikovet al. ob-
tained the most general single soliton solution for Eq.~42!,
showing the dark-gray to dark-black bifurcation@27,28#. The
dark soliton solution given in Eq.~49! can also be obtained
from the most general solution, which exhibits either a sin
dip or two dips of equal width, given in these references w
appropriate limit, viz by pushing one dip to infinity. It i
interesting to note that the mKdV equation analyzed her
of interest not only in fiber optics. The twin hole dark so
tary waves in nonintegrable systems were found in vari
physical settings such as the propagation of terahertz ele
magnetic pulses in media characterized by the simultane
presence of second and third order nonlinearities@29# and the
parametric interaction in diffractive quadratic nonlinear m
dia @30,31#.

From here, we proceed to the next step of obtaining d
two-soliton solutions, for which we assume

G5g0~11xg11x2g2! and F511x f 11x2f 2 .
~50!
04660
n
d
-
is

e
h

is

s
ro-
us

-

rk

whereg0 is a complex constant, andg1 , g2 , g3 , f 1 , and f 2
are real functions. The coefficients ofx0 lead to Eq.~45!.
From the coefficient ofx, we obtain

~DT2«DZ
313«lDZ!~1• f 11g1•1!50, ~51a!

~DZ
22l!~1• f 11 f 1•1!18ug0u2g150. ~51b!

To solve these equations, we assume

g15P1 exp@j1#1P2 exp@j2# and

f 15exp@j1#1exp@j2#, ~52a!

wherej15v1T1c1Z1j1
(0) andj25v2T1c2Z1j2

(0) , with

v15«c1
323«lc1 and v25«c2

323«lc2 . ~52b!

The values ofP1 andP2 are found to be

P15
4ug0u22c1

2

4ug0u2 ,

P25
4ug0u22c2

2

4ug0u2 . ~53!

The coefficients ofx2 lead to the following equations:

~DT2«DZ
313«lDZ!~1• f 21g1• f 11g2•1!50,

~54a!

~DZ
22l!~1• f 21 f 1• f 11 f 2•1!12~2ug0u2g21ug0u2g1

2!50.
~54b!

It can be shown that the above system of equations can
satisfied if we assume

g25A12P1P2 exp@j11j2# and f 25A12exp@j11j2#.
~55a!

The value ofA12 is found to be

A12

5
~P22P1!$2~v22v1!1«~c22c1!323«l~c22c1!%

~12P1P2!$2~v21v1!1«~c21c1!323«l~c21c1!%
.

~55b!

The dark two-soliton solution for the HNLS equation ca
be obtained by using the expressions ofg1 , g2 , f 1 , and f 2 .
In Fig. 2, this two-soliton solution is plotted. The dark two
soliton solution behaves in an elastic manner character
of all soliton solutions. They retain their shape after collisi
only with a slight change in their phase. Also, like all da
solitons, they appear to repel each other. Thus for the
time, to our knowledge we have reported on a dark tw
soliton solution of an integrable HNLS system.

VI. CONCLUSION

In this paper, we have discussed the dark solitons of N
the Hirota equation, and the HNLS equation. For the N
8-7
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system, we have given the Lax pair for the dark soliton us
the AKNS formalism. For the Hirota system, we have o
tained dark soliton conditions using the Painleve´ analysis. It
was found that, the system admits dark soliton propaga
when the coefficient of self-steepening is negative,26 to be
precise. The integrability of the above equation was a
proved by the specific Lax pair. This clearly indicates t
existence of dark solitons similar to the dark soliton prop
gation in NLS systems in the normal dispersion regime.
deed, the dark one and two-soliton solutions were found
the Hirota bilinear method, and the solutions were plott
Similar results were produced for the HNLS equation. In t
case, the system admits dark soliton propagation when
coefficients of both self-steepening and inelastic Raman s
tering are negative,26 and23, respectively.

FIG. 2. Dark two-soliton solution of the HNLS system.
ev
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It is seen that the higher-order effects TOD, SS, and S
affect the velocity of the dark soliton, however, they prop
gate without any change in their shape and intensity. T
dark two-soliton solution behaves in an elastic manner ch
acteristic of all soliton solutions. The solitons retain the
shape after collision only with a slight change in their pha
Also, like all dark solitons, they appear to repel each oth
and hence there is no possibility of forming a bound st
between them. This important feature is an attractive fac
that makes dark solitons a preferred tool, instead of bri
solitons, in long-distance communications. The bright soli
solutions for the nonlinear Schro¨dinger equation with higher-
order effects are well known. What we have attempted in t
paper is to establish dark soliton propagation, which is
well understood in systems with higher-order effects. Hen
we have not tried to analyze gray soliton solutions. Als
dark solitons are more important than gray solitons from
point of view of practical applications such as optical co
munication, etc. Hence, we conclude that dark solitons
propagate in higher-order NLS systems under suitable ph
cal conditions, as predicted in this paper by using an integ
bility analysis, and that they are experimentally realizab
Due to the superior nature of dark solitons when compa
with bright solitons, viz. stability, repulsive nature, etc. w
believe that these dark solitons are more favorable for the
of long-distance communication. The extension of the ab
equations toN-coupled system is under progress, and
results will be published soon.
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